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Random Walk in a Random Medium in 
One Dimension 

Michael Nauenberg I 

Received March 19, 1985; final June 30, 1985 

Applying scaling and universality arguments, the long-time behavior of the 
probability distribution for a random walk in a one-dimensional random 
medium satisfying Sinai's constraint is obtained analytically. The convergence to 
this asymptotic limit and the fluctuations of this distribution are evaluated by 
solving numerically the stochastic equations for this walk. 
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The random walk problem in a random environment is a paradigm for dis- 
ordered systems which has attracted the attention of mathematicians (l) and 
physicists. 2 Recently, Sinai (3) found that, under certain restrictions for the 
random hopping probabilities in the one-dimensional case, the dis- 
placement for long times increases as log2(t), where t is the time elapsed, in 
contrast to the case of ordinary diffusion which behaves as w/~. A simple 
scaling argument for Sinai's result has been given by Marinari eta[. ,  (4) who 
provided numerical evidence for this behavior. More recently Fisher, (5) 
Luck, (6) and Cardy (7/have shown that the probability distribution for this 
random walk in arbitrary dimension corresponds to the Green's function of 
a nonlinear field theory. Applying the renormalization group, they found 
that above two dimensions the ordinary diffusion law is applicable, while 
below two dimensions the e expansion gives a subdiffusive power law 
behavior in time, and that one dimension is the lower critical dimen- 
sionality. By relaxing Sinai's constraint, further interesting results have also 
been obtained by Derrida and Pomeau. (8) 

Department of Physics, University of California, Santa Cruz, California 95064. 
2 For a review see Ref. 2a. An application to biophysics is discussed in Ref. 2b. 
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In this paper we obtain, by a heuristic argument, the analytic long- 
time behavior of the probability distribution for the Sinai random walk 
problem in one dimension from scaling and universality properties which 
have been proven rigorously by Sinai. (3) We verify the convergence to this 
asymptotic limit by solving numerically the stochastic equation for the 
probability distribution for several different random hopping distributions, 
and we evaluate also the fluctuations of this distribution. 

The probability distribution P(i, t) for the one-dimensional discrete 
random walk in a random medium, where i and t are integers, satisfies the 
stochastic equation 

P ( i , t + l ) = p + ( i - 1 ) P ( i - l , t ) + p _ ( i + l ) P ( i + l , t )  (1) 

with the initial condition P(i, O)= 6i, o. Here p+ (i) is the probability of hop- 
ping from site i to site i+  1 in unit time, with p+(i )+p_( i )= 1, and the 
p(i)'s are independent random variables chosen with a probability measure 
p(p). Sinai's condition ~ for p(p) is that 

f fdp  p(p) log[p/(1 - p)] = (2) 0 

Setting p+(i)=�89 _+q(i)], Eq. (1) can be written in the corresponding 
form, 

c~P 1 ~2p t~ 
3t 2 Ox 2 Ox (riP) (3) 

where the derivative symbols denote here the corresponding finite differen- 
ces. Equation (3) is the starting point for the field theoretical formulation 
of this problem. 15 7) 

The scaling property implies that at long times the only fundamental 
lengt, h in this random walk is the root mean square displacement ~(t)= 
[-(X2)] 1/2 which according to Sinai ~ depends asymptotically on t as 
log2(t). The brackets ( - . . )  indicate the average over a particular con- 
figuration of the random medium, and the bar corresponds to the average 
over configurations. Therefore the mean of the probability distribution 

7Z 1 averaged over all random configurations P( i, t) = ~o dp p(p ) P( i, t) scales 
according to 

if(x, t) = ~-~ f[x/~( t) ] (4) 

where x=2i,  (2 i+1)  for t even, (odd), and f(z)  is a scaling function 
satisfying the normalization conditions 

I ~  dz f(z)--- 2 (5) 
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and 

f~  dz zZf(z) = 2 (6) 
3o~ 

Next, we consider the universality property of the distribution which 
means that f ( z )  is a function independent of the precise form of the 
probability measure p(p), provided it satisfies Eq. (2). It is then possible to 
determine f ( z )  by considering the special measure 

p(p) = �89 - Po) + �89 - 1 + Po) (7) 

in the limit that po=0 .  Although in this case the walk becomes deter- 
ministic, we do not expect a crossover to a new scaling behavior because 
this limit embodies the physics of strong disorder, as will be discussed 
below~ This is to be contrasted with the case P0 = 1/2 which is the limit of 
weak disorder and corresponds to the ordinary random walk for which 
f ( z )  is a Gaussian function. For any given configuration the walker will be 
permanently trapped between any two sites i and i +  1, for which p+(i )= 1 
and p_ (i + 1)-- 1. Starting at site i = 0 at time t = 0, it can be readily seen 
that the probability of reaching a site i for i < t averaged over all con- 
figurations of the random medium is 2-Fil. Universality then implies that 
f ( z )  is an exponential function of z, and the normalization conditions, 
Eqs. (5) and (6) lead to 

f ( z )  = x ~  e - ' / 2  I~l (8) 

We have verified our scaling and universality assumptions, and 
evaluated the convergence of the scaled mean probability distribution to 
the asymptotic form, Eq. (8), by solving numerically the stochastic dif- 
ference equation, Eq. (1), for several different probability measures p(p) 
including the special measure Eq.(7). Figure la shows the scaled 
probability distribution, �89 t), as a function of the scaled distance 
x/~(t), averaged over 10000 configurations obtained with the uniform 
probability measure, p(p)= 1, at t - 2 6  time steps. Figure lb shows the 
corresponding results for 3000 configurations at t = 2  ~3 time steps. The 
error bars indicate the fluctuation in the probability distribution over the 
configurations of this random medium, and will be discussed in detail later 
on. As time increases the convergence of the numerical results to the 
exponential scaling function, Eq. (8), shown as a solid curve in Fig. la,b is 
found to be fairly rapid except near the origin of the random walk. Figure 2 
shows the approach of xf~(t) to the linear dependence on log t found by 
Sinai. (3) Figure lc gives an example of a quite different random medium to 
explicitly demonstrate universality. In this case, the scaled probability dis- 
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Fig. 1. (a) The scaled mean probability distribution, �89 t), obtained by solving 
numerically Eq. (1) at t = 26, averaged over 10 000 configuration with the uniform measure 
p(p). The error bars indicate the fluctuations, Fig. 3. The curve is the exponential 
(1/x//2) e--f ir~t  (b )The  same distribution at t=213, averaged over 3000 configurations. 
(c) The scaled distribution averaged over 2600 configuration obtained with the measure p(p), 
Eq. (7) for P0 = 0.01. 
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Fig. 1 (continued) 
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Fig. 2. The upper error bars show ~ ( t ) v s .  log t (base 2), and the lower ones show the 
corresponding values of [<x >2] 1/4 Eq. (i 1 ). 
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tribution is averaged over 2600 configuration for the measure p(p), Eq. (7), 
with Po = 0.01, evaluated at t = 213 time steps. We find that the convergence 
to the asymptotic limit, Eq. (8), occurs sooner here, even before ~(t) 
approaches the l o g  2 t behavior. 

We have studied the fluctuations 6P(i, t )=  [/~2(i, t)_P2(i, t)] l /2 of 
this probability distribution due to the random medium, which should 
likewise scale with ~(t). For the measure p(p), Eq. (7), in the limit P0 = 0, 
we find P2(i,t)=P(i,t), and we are led to the conjecture that 
asymptotically 

[c~P(x, 0 ]  2 A = ~-~ f[x/~(t)] (9) 

where A is a constant, and f (z)  is given by Eq. (8). In Fig. 3 we give some 
numerical evidence for Eq. (9) in the case of the uniform measure p(p). We 
plot ~(t)[bP(x, t)] 2 as a function of the scaled distance x/~(t) averaged 
over 10 000 configurations for t = 2 6, 2 8, and 2 l~ Except near the origin a 
good fit is obtained for the scaling form Eq. (9) with A = 0.25. However the 
constant A is not universal; we find, for example, that A =0.5 for the 
measure p(p), Eq. (7), with Po = 0.01. These scaling results imply that the 
relative fluctuations diverge asymptotically according to 

6P(x, t )~  = [~(t)]l/2 e(l/,/~)lxl/r (10) 
P(x, t) 
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Fig. 3. Histogram for the square of the scaled fluctuations, ~(t)[gP(x,/)]2, averaged over 
10 000 configurations of the uniform measure, at t = 2 6, 2 8, and 21~ The curve is the exponen- 
tial �89 t~l/,/5). 
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To understand further this remarkable behavior we have studied the 
probabili ty distribution of P(x, t) for the uniform measure. We find that it 
is very sharply peaked at P(x, t ) = 0  and decreases monotonically for 
P(x, t ) >  0. This implies that the most probable value of P(x, t) is quite dif- 
ferent from the mean P(x, t), which appears to be a common property of 
disordered systems. ~ We note that the limit Po = 0 for the measure p(p), 
Eq. (7), implies P(i, t)P(j, t)=6isP(i, t), because only configurations with 
a nearest trap to the origin between sites i and i +  1 contribute to this 
average. In Fig. 4 we show the correlation function P(x, t)P(y, t) times 
~(t) for y = 0 as a function of the scaled distance x/~(t) for the uniform 
measure, at t = 2 t~ It is sharply peaked at x = 0, and we find that this peak 
becomes sharper as t increases, while the height approaches the scaling 
limit Af(z) for z = 0. A similar behavior of the correlation function occurs 
also for y = 0. Further evidence for this behavior is obtained by evaluating 

(2 )2= ~ ijP(i, j) P(j, t) (11) 
U 

which in the P0-- 0 limit for the special measure, Eq. (7), equals ~2(t). The 
results for the uniform measure are presented in Fig. 2, which shows that 
[ ( x > 2 ]  1/4 approaches the same linear dependence on log t as ~(t). 

The asymptotic exponential probabili ty distribution, which we have 
discussed here, has the same fundamental role for the one-dimensional ran- 

Fig. 4. 
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The scaled correlation function ~(t) P(x, t) P(O, t) averaged over 10000 con- 
figurations with the uniform measure p(p) at t = 21% 
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dora walk in a random medium as the Gaussian distribution has for the 
ordinary random walk. It is remarkable that simple scaling and universality 
arguments lead to a solution to the hitherto untractable stochastic 
equation, Eq. (1), and it may therefore be worthwhile to explore 
applications of this technique to related problems. It has been called to my 
attention that Sinai (3) has shown that the probability distribution con- 
verges to a functional of a Wiener process. We hope our work will 
stimulate efforts toward a rigorous derivation that it is indeed an exponen- 
tial. The numerical calculations were performed on a Ridge computer and 
required ~ 100 CPU hr. 

A C K N O W L E D G M E N T S  

I would like to thank J. L. Cardy for an enlightening discussion. 
This research was supported in part by a grant from the National 

Science Foundation. 

NOTE ADDED IN PROOF 

I have just learned that, stimulated by these numerical results, Harry 
Kesten has succeeded in computing the exact sum of the distribution. This 
is an infinite sum of exponentials which reduces to one exponential for 
large distances. That  paper will appear in Physica. 
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